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ABSTRACT
We prove that if R is a commutative ring such that each localization at a prime
ideal has finite weak global dimension then every R-module has a flat
envelope if and only if R is coherent and has weak global dimension less than
or equal to two.

Flat preenvelopes and flat envelopes were defined by Enochs [2] which
characterized the coherence in terms of flat preenvelopes and proved that for a
noetherian local domain, every module has a flat envelope if the ring has weak
global dimension = 2, remarking that it would be interesting to determine the
rings for which every module has a flat envelope. In [5] Martinez showed that,
over a commutative ring with weak global dimension = 2, every module has a
flat envelope if and only if R is a coherent ring, and, for a domain, the
condition that each module has a flat envelope is equivalent to being a
coherent ring with weak global dimension = 2.

In this paper R will be an associative ring with identity and an R-module will
be a right R-module unless otherwise stated. All the morphisms, even of left R-
modules, will be always written as acting on the left. If A/ is an R-module, and /
a set, MD will be the direct sum of copies of M indexed by I, and M* =
Homgz (M, R) will denote the dual module of M, §,, being the canonical
homomorphism from M to M**,

If M is an R-module, a projective cover of M is an epimorphism f: P — M,
where P is a projective R-module, such that Ker f is a superfluous submodule
of P. It is easy to see that these conditions are equivalent to the existence of a
homomorphism f: P — M with P projective verifying:
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(a) For each homomorphism g : P’ — M where P’ is a projective R-module,
there exists a homomorphism 4 : P’— P such that feh = g.

(b) Every endomorphism 4 of P such that fo A = fis an automorphism.

Dually, a flat preenvelope of an R-module M is a homomorphism f: M — F,
with F a flat R-module, such that if g is a homomorphism from M to a flat R-
module F’ then there exists & : F — F’ verifying h o f = g. If, furthermore, the
endomorphisms 4 of F, satisfying s o f = fare automorphisms, then f is called
a flat envelope of M (2].

ProOPOSITION 1. Let R be a left coherent ring and M a finitely presented
right R-module. Then M has a flat envelope if and only if the left R-module M*
has a projective cover.

ProOOF. Let f: M — Fbe aflat envelope of M. Then, by [2, Lemma 5.1], F
is a finitely generated projective R-module. Let f*: F* — M* be the induced
homomorphism. We claim that f* is a projective cover of M*. To see this it
will be enough to show that if 4: F*— F* is a homomorphism such that
f*oh = f* then h is an automorphism (observe that f* is an epimorphism
because f: M — Fis a flat envelope). Now, B! o h* o B is an endomorphism of
F satisfying

Brloh*ofpof=PBloh*o f¥* oy =Bl o(f*oh)*opy
=Brlof**ofy=Pr'oBrof=f

so that B! o h* o B is an automorphism of F and hence & = ! o h** o B is
an automorphism.

Conversely, if g : F — M*is a projective cover of M*, by the left coherence of
R and the fact of M being a finitely presented right R-module, M* is also
finitely presented [1, Prop. 1] and hence F is a finitely generated projective
module.

Now, let f=g*oB,,: M— F* In a similar way to the above case, if
h:F*—F* is an homomorphism such that .o f= f, then A must be an
automorphism.

On the other hand, let #: M — F’ be a homomorphism where F’ is a flat
R-module. Then, as M is a finitely presented module, by [4, Theorem 1.2]
t factors through an homomorphism ¢’ : M — P’ where P’ is a finitely generated
projective R-module. Now (P’)*is projective as left R-module and hence there
exists a homomorphism s : (P’)* — F such that g o s = (¢')*, so that the homo-
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morphism f;!os* satisfies that f'es*o f=1¢" and we get that ¢ factors
through f, which completes the proof.

In [2] Enochs has shown that the left coherent rings are characterized by the
condition that all the right R-modules have a flat preenvelope. More precisely
we get the following result.

PROPOSITION 2. Let R be a ring such that every finitely presented right R-
module has a flat preenvelope. Then R is left coherent.

PrOOF. We will show that, for each set I, the right R-module R’ is flat. Let
[+ M — Fbe a flat preenvelope of a finitely presented right R-module M. Then
the homomorphism from Homg(F, F’) to Homg(M, F’) induced by fis an
epimorphism for every flat right R-module F”. In particular, this holds for Ry
and hence, for each set I, (f*)': (F*)! — (M*)! is an epimorphism. Now, since
(F*)! = Homg(F, R') and (M*)' = Homz(M, R') we have that every homo-
morphism from M to R’ factors through a flat module, which shows that R’
is flat,

We recall that a ring R is called semiregular if each finitely presented right R-
module (or equivalently each finitely presented left R-module) has a projective
cover [6]. Von Neumann regular rings and semiperfect rings are examples of
semiregular rings.

From Propositions 1 and 2 we can get

COROLLARY 3. Let R be a semiregular ring. Then every finitely presented
right R-module has a flat envelope if and only if R is a left coherent ring.

COROLLARY 4. Let R be a coherent commutative ring and yp a prime ideal of
R. Then every finitely presented R,-module has a flat envelope.

A left R-module N is called FP-injective if Extz(M, N) = 0 for each finitely
presented left R-module M. R is said to be left self-FP-injective if itself
considered as left R-module is FP-injective. We get

COROLLARY 5. Let R be a right self-FP-injective right coherent ring. Then
every finitely presented right R-module has a flat envelope if and only if R is a
left coherent semiregular ring.

Proor. It follows from Corollary 3 and Proposition 1 because, in this case,
every finitely presented left R-module is reflexive [3, Corol. 2.4].

Note that if R is a commutative ring such that every injective R-module is
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flat (an IF-ring) then every finitely presented R-module has a flat envelope if
and only if R is a semiregular ring. This implies that there exist IF-rings
without sufficient flat envelopes, even for finitely presented modules. For
instance, let R = ZXQ/Z be the trivial extension of Z by Q/Z. By [, Examp. 1,
p. 249] R is a commutative IF-ring such that it is not regular modulo its radical
and hence it is not a semiregular ring [6, Theorem 2.9].

In the remainder of the paper R will denote a commutative ring.

LEMMA 6. Let M be an R-module with a flat preenvelope. Then M, has a
Sflat preenvelope for each prime ideal p of R.

Proor. Letf: M — Fbe aflat preenvelope of M and p a prime ideal of R. If
we denote by ¢,, the canonical homomorphism from M to M, let g: M, — F’
be a homomorphism to a flat R,-module F”. As F” is also a flat R-module there
exists a homomorphism A’: F — F’ such that h’c f=_go¢,. Then h =h]
verifies that

h°ﬂ:°¢M=h°¢F°f=h/°f=g°¢M

and hence A o f, = g which implies that f, : M, — F, is a flat preenvelope of the
R,-module M,.

In a straightforward way we can prove the following result.

LEMMA 7. If M has a flat envelope M — F and M — P is a flat preenvelope
of M, then there exists a flat envelope of M, M — F’, such that F' is a direct
summand of Pand F’ =F.

ProPOSITION 8. Let R be a ring for which every R-module has a flat
envelope. Then for every finitely presented R-module M, the R,-module M®™
has a flat envelope for each prime ideal y of R.

ProOF. Let M be a finitely presented R-module and f: M — P a flat
envelope of M. By hypothesis, the R-module M® has a flat envelope and as a
consequence of [2, Coroll. 2 of Prop. 4.2] we get that if {g, },e~ 15 a sequence of
endomorphisms of P satisfying g, o f=0 Vn €N, then for each x €P there
exists m, EN such that g, og,, ;0 °gog(x)=0.

Now, since P1s a finitely generated R-module, it is possible to choose m €N
such that g, o ---og, =0.

On the other hand, let {g} },ex be a sequence of endomorphisms of P, with
g4 o f,=0for each n EN. As P is a finitely generated projective R-module the
canonical homomorphism 7 from Endg(P), to Endg(P,) is an isomorphism
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and hence for each n €N there exist g, €Endz(P) and 5, € R \ p satisfying that
n(g,/s,) = g,. In this way n(g,/1)=s,-g, and s, -g; o f, = 0 foreach nEN. If
{xy, ..., X} is a generating set of M, we have that

(& e XYL =(S,-81° f)x:/1)=0 foreachi€{l,...,r} and n€N.

So that there exist ¢{ € R \ p such that (¢} - g, o /)(x;) =t} - (g, ° f)(x;) = 0.
Now, if we consider ¢, =TI/_, #; we get that the sequence {,-g,)} satisfies
that ¢, - g, o f = 0 and hence there exists m €N such that

(ty 8m) o (w1 8mp)o > o(t;-8) = 0.
From this it follows that
Aty 8mo -+ ot 8)=A(ty 8m)o - on(t; &)
= (twSm-8m) e+ - - o (1i81-81)
=0

But, since IT'Z, £;s; is an unity in R,, we get that g/, ¢ - - - o g{ =0.

Finally, if we consider a flat envelope /4 : M, — F of the R,-module M, (which
exists by Corollary 4) by using Lemmas 6 and 7 we may assume that Fis a
direct summand of P,. Then it is easy to see that if {k,},en is @ sequence of
endomorphisms of Fsuch that k, - # = 0 for each n €N, there exists m EN for
which k,, o - - - o k; = 0 and from [2, Prop. 4.2] we obtain that the homomor-
phism 2™ : MM — FN is a flat envelope of the R,-module M™.

For a ring R we will denote by wD(R) the weak global dimension of R.
We can get

THEOREM 9. Let R be a commutative ring such that wD(R,) < co for each
prime ideal p of R. The following conditions are equivalent.

(i) R is coherent and wD(R) = 2.

(i1) Every R-module has a flat envelope.

PrROOF. (i)=>(ii) It is (5, Theorem 2.11 (i)= (ii)].

(ii)= (i) If every R-module has a flat envelope, then R is coherent. There-
fore, for each prime ideal p of R, R, is a coherent ring and as wD(R,) < o every
principal ideal of R, has finite projective dimension and hence R, is a domain
by [7, Coroll. 5.16]. On the other hand, since every finitely presented
R,-module can be considered as the localization of some finitely presented
R-module, we get from Proposition § that every countable direct sum of copies
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of a finitely presented R,-module M has a flat envelope. Now, by using [2,
Corollary to Lemma 5.1], we get that if M — F is a flat envelope of M, then M
and F have the same rank and every diagram of the form

/

where F’ is flat can be completed in a unique way.

Finally, an argument analogous to that used in [5, Theorem 2.11] allows us
to obtain the existence of a flat envelope for every R,-module, and hence from
[5, Theorem 2.12] we get that wD(R,) = 2 so that wD(R) = Sup{wD(R,)} =2
and the proof is complete.
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CoroLLARY 10. Let R be a commutative ring with wWD(R) < co. Then
every R-module has a flat envelope if and only if R is coherent and wD(R) =< 2.
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