FLAT ENVELOPES IN COMMUTATIVE RINGS

BY

J. ASENSIO MAYOR AND J. MARTINEZ HERNANDEZ[†] Departamento de Matematicas, Universidad de Murcia, 30001 Murcia, Spain

ABSTRACT

We prove that if R is a commutative ring such that each localization at a prime ideal has finite weak global dimension then every R-module has a flat envelope if and only if R is coherent and has weak global dimension less than or equal to two.

Flat preenvelopes and flat envelopes were defined by Enochs [2] which characterized the coherence in terms of flat preenvelopes and proved that for a noetherian local domain, every module has a flat envelope if the ring has weak global dimension ≤ 2 , remarking that it would be interesting to determine the rings for which every module has a flat envelope. In [5] Martinez showed that, over a commutative ring with weak global dimension ≤ 2 , every module has a flat envelope if and only if R is a coherent ring, and, for a domain, the condition that each module has a flat envelope is equivalent to being a coherent ring with weak global dimension ≤ 2 .

In this paper R will be an associative ring with identity and an R-module will be a right R-module unless otherwise stated. All the morphisms, even of left Rmodules, will be always written as acting on the left. If M is an R-module, and I a set, $M^{(I)}$ will be the direct sum of copies of M indexed by I, and $M^* =$ $\operatorname{Hom}_R(M, R)$ will denote the dual module of M, β_M being the canonical homomorphism from M to M^{**} .

If M is an R-module, a projective cover of M is an epimorphism $f: P \to M$, where P is a projective R-module, such that Ker f is a superfluous submodule of P. It is easy to see that these conditions are equivalent to the existence of a homomorphism $f: P \to M$ with P projective verifying:

[†] The authors have been partially supported by the C.A.I.C.Y.T.

Received October 6, 1987

(a) For each homomorphism $g: P' \to M$ where P' is a projective R-module, there exists a homomorphism $h: P' \to P$ such that $f \circ h = g$.

(b) Every endomorphism h of P such that $f \circ h = f$ is an automorphism.

Dually, a *flat preenvelope* of an *R*-module *M* is a homomorphism $f: M \to F$, with *F* a flat *R*-module, such that if *g* is a homomorphism from *M* to a flat *R*-module *F'* then there exists $h: F \to F'$ verifying $h \circ f = g$. If, furthermore, the endomorphisms *h* of *F*, satisfying $h \circ f = f$ are automorphisms, then *f* is called a *flat envelope* of *M* [2].

PROPOSITION 1. Let R be a left coherent ring and M a finitely presented right R-module. Then M has a flat envelope if and only if the left R-module M^* has a projective cover.

PROOF. Let $f: M \to F$ be a flat envelope of M. Then, by [2, Lemma 5.1], F is a finitely generated projective R-module. Let $f^*: F^* \to M^*$ be the induced homomorphism. We claim that f^* is a projective cover of M^* . To see this it will be enough to show that if $h: F^* \to F^*$ is a homomorphism such that $f^* \circ h = f^*$, then h is an automorphism (observe that f^* is an epimorphism because $f: M \to F$ is a flat envelope). Now, $\beta_F^{-1} \circ h^* \circ \beta_F$ is an endomorphism of F satisfying

$$\beta_F^{-1} \circ h^* \circ \beta_F \circ f = \beta_F^{-1} \circ h^* \circ f^{**} \circ \beta_M = \beta_F^{-1} \circ (f^* \circ h)^* \circ \beta_M$$
$$= \beta_F^{-1} \circ f^{**} \circ \beta_M = \beta_F^{-1} \circ \beta_F \circ f = f$$

so that $\beta_F^{-1} \circ h^* \circ \beta_F$ is an automorphism of F and hence $h = \beta_{F^*}^{-1} \circ h^{**} \circ \beta_{F^*}$ is an automorphism.

Conversely, if $g: F \to M^*$ is a projective cover of M^* , by the left coherence of R and the fact of M being a finitely presented right R-module, M^* is also finitely presented [1, Prop. 1] and hence F is a finitely generated projective module.

Now, let $f = g^* \circ \beta_M : M \to F^*$. In a similar way to the above case, if $h: F^* \to F^*$ is an homomorphism such that $h \circ f = f$, then h must be an automorphism.

On the other hand, let $t: M \to F'$ be a homomorphism where F' is a flat *R*-module. Then, as *M* is a finitely presented module, by [4, Theorem 1.2] *t* factors through an homomorphism $t': M \to P'$ where P' is a finitely generated projective *R*-module. Now $(P')^*$ is projective as left *R*-module and hence there exists a homomorphism $s: (P')^* \to F$ such that $g \circ s = (t')^*$, so that the homomorphism $\beta_{P'}^{-1} \circ s^*$ satisfies that $\beta_{P'}^{-1} \circ s^* \circ f = t'$ and we get that t factors through f, which completes the proof.

In [2] Enochs has shown that the left coherent rings are characterized by the condition that all the right R-modules have a flat preenvelope. More precisely we get the following result.

PROPOSITION 2. Let R be a ring such that every finitely presented right R-module has a flat preenvelope. Then R is left coherent.

PROOF. We will show that, for each set *I*, the right *R*-module R^{I} is flat. Let $f: M \to F$ be a flat preenvelope of a finitely presented right *R*-module *M*. Then the homomorphism from $\operatorname{Hom}_{R}(F, F')$ to $\operatorname{Hom}_{R}(M, F')$ induced by *f* is an epimorphism for every flat right *R*-module *F'*. In particular, this holds for R_{R} and hence, for each set $I, (f^{*})^{I} : (F^{*})^{I} \to (M^{*})^{I}$ is an epimorphism. Now, since $(F^{*})^{I} \cong \operatorname{Hom}_{R}(F, R^{I})$ and $(M^{*})^{I} \cong \operatorname{Hom}_{R}(M, R^{I})$ we have that every homomorphism from *M* to R^{I} factors through a flat module, which shows that R^{I} is flat.

We recall that a ring R is called semiregular if each finitely presented right R-module (or equivalently each finitely presented left R-module) has a projective cover [6]. Von Neumann regular rings and semiperfect rings are examples of semiregular rings.

From Propositions 1 and 2 we can get

COROLLARY 3. Let R be a semiregular ring. Then every finitely presented right R-module has a flat envelope if and only if R is a left coherent ring.

COROLLARY 4. Let R be a coherent commutative ring and \mathfrak{p} a prime ideal of R. Then every finitely presented $R_{\mathfrak{p}}$ -module has a flat envelope.

A left *R*-module *N* is called FP-injective if $\text{Ext}_R(M, N) = 0$ for each finitely presented left *R*-module *M*. *R* is said to be left self-FP-injective if itself considered as left *R*-module is FP-injective. We get

COROLLARY 5. Let R be a right self-FP-injective right coherent ring. Then every finitely presented right R-module has a flat envelope if and only if R is a left coherent semiregular ring.

PROOF. It follows from Corollary 3 and Proposition 1 because, in this case, every finitely presented left R-module is reflexive [3, Corol. 2.4].

Note that if R is a commutative ring such that every injective R-module is

flat (an IF-ring) then every finitely presented *R*-module has a flat envelope if and only if *R* is a semiregular ring. This implies that there exist IF-rings without sufficient flat envelopes, even for finitely presented modules. For instance, let $R = \mathbb{Z} \ltimes \mathbb{Q}/\mathbb{Z}$ be the trivial extension of \mathbb{Z} by \mathbb{Q}/\mathbb{Z} . By [1, Examp. 1, p. 249] *R* is a commutative IF-ring such that it is not regular modulo its radical and hence it is not a semiregular ring [6, Theorem 2.9].

In the remainder of the paper R will denote a commutative ring.

LEMMA 6. Let M be an R-module with a flat preenvelope. Then M_p has a flat preenvelope for each prime ideal p of R.

PROOF. Let $f: M \to F$ be a flat preenvelope of M and \mathfrak{p} a prime ideal of R. If we denote by ϕ_M the canonical homomorphism from M to $M_{\mathfrak{p}}$, let $g: M_{\mathfrak{p}} \to F'$ be a homomorphism to a flat $R_{\mathfrak{p}}$ -module F'. As F' is also a flat R-module there exists a homomorphism $h': F \to F'$ such that $h' \circ f = g \circ \phi_M$. Then $h = h'_{\mathfrak{p}}$ verifies that

$$h \circ f_{\mathfrak{p}} \circ \phi_M = h \circ \phi_F \circ f = h' \circ f = g \circ \phi_M$$

and hence $h \circ f_{\mathfrak{p}} = g$ which implies that $f_{\mathfrak{p}} : M_{\mathfrak{p}} \to F_{\mathfrak{p}}$ is a flat preenvelope of the $R_{\mathfrak{p}}$ -module $M_{\mathfrak{p}}$.

In a straightforward way we can prove the following result.

LEMMA 7. If M has a flat envelope $M \to F$ and $M \to P$ is a flat preenvelope of M, then there exists a flat envelope of M, $M \to F'$, such that F' is a direct summand of P and $F' \cong F$.

PROPOSITION 8. Let R be a ring for which every R-module has a flat envelope. Then for every finitely presented R-module M, the R_{p} -module $M_{p}^{(N)}$ has a flat envelope for each prime ideal p of R.

PROOF. Let M be a finitely presented R-module and $f: M \to P$ a flat envelope of M. By hypothesis, the R-module $M^{(N)}$ has a flat envelope and as a consequence of [2, Coroll. 2 of Prop. 4.2] we get that if $\{g_n\}_{n \in \mathbb{N}}$ is a sequence of endomorphisms of P satisfying $g_n \circ f = 0 \forall n \in \mathbb{N}$, then for each $x \in P$ there exists $m_x \in \mathbb{N}$ such that $g_{m_x} \circ g_{m_x-1} \circ \cdots \circ g_2 \circ g_1(x) = 0$.

Now, since P is a finitely generated R-module, it is possible to choose $m \in \mathbb{N}$ such that $g_m \circ \cdots \circ g_1 = 0$.

On the other hand, let $\{g'_n\}_{n\in\mathbb{N}}$ be a sequence of endomorphisms of $P_{\mathfrak{p}}$ with $g'_n \circ f_{\mathfrak{p}} = 0$ for each $n \in \mathbb{N}$. As P is a finitely generated projective R-module the canonical homomorphism π from $\operatorname{End}_R(P)_{\mathfrak{p}}$ to $\operatorname{End}_R(P_{\mathfrak{p}})$ is an isomorphism

and hence for each $n \in \mathbb{N}$ there exist $g_n \in \text{End}_R(P)$ and $s_n \in R \setminus p$ satisfying that $\pi(g_n/s_n) = g'_n$. In this way $\pi(g_n/1) = s_n \cdot g'_n$ and $s_n \cdot g'_n \circ f_p = 0$ for each $n \in \mathbb{N}$. If $\{x_1, \ldots, x_r\}$ is a generating set of M, we have that

$$(g_n \circ f)(x_i)/1 = (s_n \cdot g'_n \circ f_p)(x_i/1) = 0$$
 for each $i \in \{1, \ldots, r\}$ and $n \in \mathbb{N}$.

So that there exist $t_n^i \in R \setminus \mathfrak{p}$ such that $(t_n^i \cdot g_n \circ f)(x_i) = t_n^i \cdot (g_n \circ f)(x_i) = 0$.

Now, if we consider $t_n = \prod_{i=1}^r t_n^i$ we get that the sequence $\{t_n \cdot g_n\}$ satisfies that $t_n \cdot g_n \circ f = 0$ and hence there exists $m \in \mathbb{N}$ such that

$$(t_m \cdot g_m) \circ (t_{m-1} \cdot g_{m-1}) \circ \cdots \circ (t_1 \cdot g_1) = 0.$$

From this it follows that

$$\pi(t_m \cdot g_m \circ \cdots \circ t_1 \cdot g_1) = \pi(t_m \cdot g_m) \circ \cdots \circ \pi(t_1 \cdot g_1)$$
$$= (t_m s_m \cdot g'_m) \circ \cdots \circ (t_1 s_1 \cdot g'_1)$$
$$= 0$$

But, since $\prod_{j=1}^{m} t_j s_j$ is an unity in R_p , we get that $g'_m \circ \cdots \circ g'_1 = 0$.

Finally, if we consider a flat envelope $h: M_{\mathfrak{p}} \to F$ of the $R_{\mathfrak{p}}$ -module $M_{\mathfrak{p}}$ (which exists by Corollary 4) by using Lemmas 6 and 7 we may assume that F is a direct summand of $P_{\mathfrak{p}}$. Then it is easy to see that if $\{k_n\}_{n \in \mathbb{N}}$ is a sequence of endomorphisms of F such that $k_n \circ h = 0$ for each $n \in \mathbb{N}$, there exists $m \in \mathbb{N}$ for which $k_m \circ \cdots \circ k_1 = 0$ and from [2, Prop. 4.2] we obtain that the homomorphism $h^{(\mathbb{N})}: M_{\mathfrak{p}}^{(\mathbb{N})} \to F_{\mathfrak{p}}^{(\mathbb{N})}$ is a flat envelope of the $R_{\mathfrak{p}}$ -module $M_{\mathfrak{p}}^{(\mathbb{N})}$.

For a ring R we will denote by wD(R) the weak global dimension of R. We can get

THEOREM 9. Let R be a commutative ring such that $wD(R_p) < \infty$ for each prime ideal p of R. The following conditions are equivalent.

(i) R is coherent and $wD(R) \leq 2$.

(ii) Every R-module has a flat envelope.

PROOF. (i) \Rightarrow (ii) It is [5, Theorem 2.11 (i) \Rightarrow (ii)].

(ii) \Rightarrow (i) If every *R*-module has a flat envelope, then *R* is coherent. Therefore, for each prime ideal p of *R*, R_p is a coherent ring and as wD(R_p) $< \infty$ every principal ideal of R_p has finite projective dimension and hence R_p is a domain by [7, Coroll. 5.16]. On the other hand, since every finitely presented R_p -module can be considered as the localization of some finitely presented *R*-module, we get from Proposition 8 that every countable direct sum of copies of a finitely presented R_{p} -module M has a flat envelope. Now, by using [2, Corollary to Lemma 5.1], we get that if $M \rightarrow F$ is a flat envelope of M, then M and F have the same rank and every diagram of the form

where F' is flat can be completed in a unique way.

Finally, an argument analogous to that used in [5, Theorem 2.11] allows us to obtain the existence of a flat envelope for every R_p -module, and hence from [5, Theorem 2.12] we get that $wD(R_p) \leq 2$ so that $wD(R) = Sup\{wD(R_p)\} \leq 2$ and the proof is complete.

COROLLARY 10. Let R be a commutative ring with $wD(R) < \infty$. Then every R-module has a flat envelope if and only if R is coherent and $wD(R) \leq 2$.

References

1. R. R. Colby, Rings which have flat injective modules, J. Algebra 35 (1975), 239-252.

2. E. E. Enochs, Injective and flat covers, envelopes and resolvents, Isr. J. Math. 39 (1981), 189-209.

3. S. Jain, Flat and FP-injectivity, Proc. Am. Math. Soc. 41 (1973), 437-442.

4. D. Lazard, Autour de la platitude, Bull. Soc. Math. France 97 (1969), 81-128.

5. J. Martinez Hernandez, Relatively flat envelopes, Commun. Algebra 14 (1986), 867-884.

6. W. K. Nicholson, Semiregular modules and rings, Can. J. Math. 28 (1976), 1105-1120.

7. W. V. Vasconcelos, *The rings of dimension two*, Lecture Notes in Pure and Appl. Math. 22, Marcel Dekker, 1976.